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The dynamics of a thin film of Newtonian fluid coating the inner surface of an elastic 
circular tube is analysed. This problem is motivated by an interest in the closure of 
small airways of the lungs either by formation of a liquid bridge, the collapse of the 
airway wall or a combination of both processes. Liquid bridge formation is due to  the 
destabilization of the liquid film that coats the inner surface of airways, while wall 
collapse can be due to either the high surface tension of the air-liquid interface or the 
flexibility of the wall. 

Nonlinear evolution equations for the film thickness and wall position are derived 
using lubrication theory, but an accurate representation of the curvatures of both the 
liquid and wall interfaces is employed which is valid for thick films. These 
approximations allow closure to be predicted. In addition, these approximations are 
justified by comparison with rigid-wall results obtained by solving the full 
Navier-Stokes equations and because fluid inertia only becomes important in the 
very late stages of closure. The linear stability of these equations is examined using 
normal-mode analysis for infinitesimal disturbances and the nonlinear stability is 
investigated by solving the governing equations numerically using the method of 
lines. Solutions show that there is a critical film thickness, strongly dependent on 
fluid and wall properties, above which unstable waves grow to form liquid bridges. 
The critical film thickness decreases with increasing surface tension or wall 
compliance since waves grow faster. Even for relatively stiff airways, the volume of 
fluid in the liquid lining required for closure can be approximately 70% of the 
volume for the rigid-tube case. Wall damping is an important effect only when the 
airway is sufficiently compliant. Airway closure occurs more rapidly with increasing 
unperturbed film thickness, surface tension and wall flexibility and decreasing wall 
damping. 

1. Introduction 
It is well recognized that the thin liquid film which lines the inner surface of the 

lungs’ airways may cause closing off of the small airways in the region of the 
respiratory bronchioles either by the formation of a meniscus or by provoking 
collapse of the flexible wall of such airways (Macklem, Proctor & Hogg 1970). This 
happens most frequently near the end of expiration when the airway diameters are 
small (Hughes, Rosenzweig & Kivitz 1970; Kamm & Schroter 1989). The closure and 
subsequent reopening of these airways contributes to the shape of the pressure- 
volume curve in cycled lungs, since the capacity to accommodate air volume 
is cyclically enhanced and disenhanced when the alveolar regions distal to the sites 
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of closure are recruited and de-recruited (Frazer, Weber & Franz 1985). The shape 
of this curve characterizes the mechanical response of the lung. Measuring the 
occurrence of airway closure is one component of a standard pulmonary function 
test : the single-breath nitrogen washout test. When this test shows early airway 
closure, it is often interpreted that there is inhomogeneous ventilation distribution 
within the lung, which may be caused by a number of normal and pathological 
conditions (Crawford et al. 1989). Since diseases of the small airways are difficult to 
detect, especially a t  an early stage, results of this test carry particular significance. 

The dynamic stability of a thin liquid film has been investigated by Goren (1962), 
Hickox (1971), Hammond (1983), Gauglitz & Radke (1988), Kamm 6 Johnson 
(1990) and Johnson et al. (1991). Hammond (1983) and Gauglitz & Radke (1988) were 
both interested in engineering applications such as two-phase flows in porous media, 
where one fluid displaces another, and a thin film of fluid is left behind wetting the 
walls of the conduit. Kamm & Johnson (1990) and Johnson et al. (1991) included the 
effects of fluid inertia in a one-dimensional model to simulate airway closure at  low 
lung volumes. In addition, Otis et al. (1990) included the effects of surfactant on the 
surface tension of the interface. Further aspects which may be relevant to the lungs 
are the viscoelastic properties of the liquid lining and the airways. In this paper we 
will investigate the effects of airway flexibility but assume a constant interfacial 
surface tension and a Newtonian fluid. 

Nonlinear evolution equations for the film thickness and the wall position are 
derived using lubrication theory since the film coating the wall is extremely thin and 
the Reynolds number is at  most O( 1) .  Hammond’s (1983) thin-film analysis showed 
that initial sinusoidal disturbances with wavelengths greater than the circumference 
of the inviscid core evolve into stable wetting collars of constant mean curvature, 
with dry patches between collars under certain conditions. However, meniscus 
formation was not predicted. Gauglitz & Radke (1988) also employed a small-slope 
approximation but included a form of the Young-Laplace equation for the curvature 
of the film interface that is more accurate for thicker films. In addition, they used the 
axisymmetric form of the kinematic boundary condition which yields the evolution 
equation for the film thickness, instead of the two-dimensional form of the kinematic 
boundary condition used by Hammond (1983) which is asymptotically valid for thin 
films. They demonstrated numerically that meniscus formation occurs above a 
critical film thickness. Below this thickness, stable collars were obtained, as in 
Hammond (1983). This extension of Hammond’s analysis is beyond the range of 
asymptotic validity when the film thickness becomes large. It has also been applied 
to other problems, where the physics is quite different, such as the Rayleigh-Taylor 
instability at a perturbed interface between two viscous fluid layers whose base flow 
is either Poiseuille or Couette flow, and the stability of flow down a vertical 
cylindrical surface (Oron & Rosenau 1989; Rosenau & Oron 1989). Johnson et al. 
(1991) used a model similar to that of Gauglitz & Radke (1988) to simulate airway 
closure except that they included fluid inertia in an ad hoc fashion. Their results 
agreed very well with solutions to the full problem for small Reynolds numbers and 
thicknesses outside the range of validity of lubrication theory. We will apply the 
model due to Gauglitz & Radke (1988) and show how the wall properties of a flexible 
elastic wall modify the stability results of Hammond (1983) and Gauglitz & Radke 

In $2, the nonlinear dynamic model is formulated from first principles. Nonlinear 
evolution equations are derived in $3  for the film thickness and the tube using the 
lubrication theory approximation for long waves. These equations are first linearized 

(1988). 
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and their stability is investigated by the method of normal modes in $4. Numerical 
solutions to the full nonlinear problem are presented in $5 and the conclusions in $6.  

2. Formulation of nonlinear model 
2.1. Fluid mechanics of the thin Jilm 

Consider a core of Newtonian fluid of undisturbed radius b and viscosity Ap, 
surrounded by a thin film consisting of a different fluid of viscosity p coating the 
inner surface of a flexible tube with an undisturbed radius a (figure 1 ) .  The dynamics 
of the core is neglected since we assume that A < 1 and HA/a < 1, where H is a 
characteristic film thickness (Hammond 1983). Consequently the pressure in the core 
is constant. The flow in the film can be modelled using continuity and Navier-Stokes 
equations which are given below : 

v.u* = 0 I (2 . la )  
for b+ h*(z*, t * )  < r* < a+q*(Z*, t* ) ,  

( 2 . l b )  
= -Vp*+pVZu* 

where u*,p* are the velocity vector and the pressure distribution in the film, 
respectively. The air-liquid interface is located at r* = b + h*(z*, t * )  and the tube wall 
at  r* = a + q*(z* ,  t * ) ,  where h* and q* are the respective axisymmetric deflections of 
the air-liquid and wall-liquid interfaces from their unperturbed states, and (r*,  8, z * )  
are the usual cylindrical coordinates. Axial wall deflection is not included since the 
tube is assumed to be tethered and only long-wavelength disturbances will be 
considered (Dragon & Grotberg 1991). 

The kinematic boundary conditions at the liquid-wall interface are given by 

u* = -+w*&) a7* and w* = 0 at r* = a+q*(x*,t*), (2 .2a,  b )  
at* 

where u* and w* are the radial and axial components of velocity in the thin film. 
Unit vectors tangential and normal to the air-liquid interface are given by 

and 

where 2 and i are the unit vectors in the axial and radial directions. Unit vectors 2w, 
fw, f, and ri, are defined similarly at the liquid-wall interface with h* replaced by q*. 
The tangential and normal stress conditions due to constant surface tension, u, can 
be written in tensor form 

T * . i  = ~ K * A  (2 .5)  
where the stress tensor for the film, T*,  is given by 

T* = -p*/+pu(Vu*+V~*~) 

and K* is the curvature of the interface: 
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FIGURE 1. Variables describing geometry of air-liquid and wall-liquid interfaces. 

Since the air-liquid interface is a material surface, we have the following kinematic 
boundary condition : 

at r* = b+h*, 
ah* ah* -+w*- = u* 
at* aZ * 

which can be written in terms of the axial flow rate, QZ, 

where 

ah* 1 
at* b + h* 
-- 

(2.10) 

2.2.  Equation of motion of the tube 
The tube is assumed to be infinitely long, thin-walled, isotropic and impermeable. 
The relevant characteristics of the tube are its density pw, modulus of elasticity E ,  
damping coefficient g, longitudinal tension T,*, circumferential tension, T: , thickness 
ho and Poisson ratio y.  

In the long-wavelength limit, axial deflections are much smaller than radial 
deflections (Atabek & Lew 1966; Dragon & Grotberg 1991). Consequently, we only 
consider normal forces acting a t  the liquid-wall interface. The equation of 
equilibrium of normal forces is given by 

(2.11) 

Wall inertia is negligible as is the fluid inertia in this problem. The circumferential 
tension, Q, is related to the radial strain in the following way (Goldenveizer 1961 ; 
Atabek & Lew 1966): 

(2.12) 

where T,* is the initial 
(Elad, Foux &, Kivity 

tension, and the strain assumes the following nonlinear law 
1 9 8 8 ~ )  ; 

(2.13) 

where n 2 1.  
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3. Lubrication theory 
Applying the lubrication theory approximation for thin films to the governing 

equations derived in 52.1, all lengthscales are non-dimensionalized with respect to 
the unperturbed tube radius a :  

(h*, 7*, r*, z*)  = a(&, €7, r ,  2) (3.1) 

r* = a ( l + q - s y )  where E = 1-b/a Q 1 (3.2) 

and a new independent variable y is defined such that 

so that y = Y = 1 + 7 - h  is the air-liquid interface and y = 0 is the wall-liquid 
interface. Following Hammond (1983), the velocity components, pressure dis- 
tribution and time are scaled as follows: 

Then the momentum equations in the thin film, (2.1 b ) ,  become to leading order in E ,  

(3.4a, b )  

where Re = ~ ~ p ' ~ a / p ~  is the Reynolds number. Hence the fluid inertia terms can be 
neglected provided s2Re Q 1. The boundary conditions at the liquid-wall interface, 
(2.2), are 

u = -  a7 at y = O  and w = O ,  (3.5a, b)  

and the tangential and normal stress conditions a t  the air-liquid interface, (2.5), 
reduce to 

at 

E-1 
at y = Y,  (3.6a, b )  

aw a2h 
- = 0  and p-pcore=-- 
a Y  a22 i ++- 1)  

where p,,,, is the constant pressure of the core, p,,,, = 1 / ~ ( 1  - E ) ,  obtained by setting 
h = 0. Even though equation (3.6b) is asymptotically equivalent t o p  = h,, + h + O(s), 
by retaining some higher-order terms in the expressions for the principal radii of 
curvature it is possible to predict meniscus formation (Gauglitz & Radke 1988). This 
procedure of keeping selected higher terms has been applied to different problems 
and is often known as 'regularization'. For example, Oron & Rosenau (1989) derived 
a 'regularized ' Kuramoto-Sivashinsky equation by applying an asymptotic 
approach which took into account large gradients and used the full expression for the 
curvature so that wave breaking could be observed. We could have used the exact 
expression for the curvature as given by (2.7) but Gauglitz & Radke (1988) 
demonstrated, by calculating the static shape of an interface that has constant mean 
curvature due to a uniform pressure difference, that (3.6b) is a good approximation 
to (2.7) in predicting what the maximum volume and radius of the liquid collar are 
before the formation of a meniscus. 

If s2Re Q 1, the pressure is independent of y and the longitudinal velocity, w, is 
determined by integrating the axial momentum equation, (3.4a), twice, 

w = -- ap(y"-2yy). 
2 az 

(3.7) 
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The pressure gradient is obtained by differentiating (3.6b). I n  the lubrication theory 
limit, Q$ is given by 

Q$ = 2 n ~ ~ e J r w d y + O ( ~ ~ ) .  
P 

A nonlinear evolution equation for h is obtained by substituting (3.6)-(3.8) into (2.9) : 

-- - 1 ah)}]. (3.9) 
ah 
at 1 +s(h- 1)  

I n  this small-slope approximation, due to Gauglitz & Radke (1988), the dependence 
on the circumferential film curvature, 1 / 1  +s(h- l ) ,  is kept. Johnson et al. (1991) 
showed that this approximation works very well for rigid tubes (E + 00, 9 = 0) by 
comparing this type of model with numerical solutions to the full governing 
equations and boundary conditions. 

The scalings used in the lubrication approximation are also applied to the wall 
equation. By applying the same approximation to  the wall curvature in (2.11) as in 
(3.6) and using the scalings introduced in (3.1) and assuming a linear hoop stress law 
in (2.12), i.e. n = 1 in (2.13), equation (2.11) reduces to 

(3.10) 

where p,,, is the constant pressure outside the tube, p,,, = -To/€,  and 

Here r is the ratio of surface-tension forces to elastic forces, T, is the ratio of 
longitudinal wall tension to  surface-tension, To is the ratio of initial circumferential 
tension to  surface tension, M is the ratio of wall mass to fluid mass and G is the ratio 
of wall damping to fluid damping. In  addition, we define a damping parameter q5 = 
e3MG which remains finite in the limit s + 0, so that the following evolution equation 
for the wall displacement is obtained: 

4. Linear stability analysis 
Estimates for the dimensionless parameters appearing in the evolution equations 

(3.9) and (3.12) are based on the properties and dimensions of the terminal 
bronchioles of the lungs and the liquid lining. The following dimensional values 
appropriate for such airways were chosen : a = 2.5 x cm, 
E = 6 x lo4 dynes/cm2, g = 10 s-l, h, = 2.5 x lop3 cm, T, = 25 dynes/cm (based on a 
pleural pressure of -5  cm H,O), y = 0.5, p = 0.01 P, pw = 1 g/cm3, (r = 20 dynes/ 
cm. The dimensionless parameter values based on the above are: E = 0.1, q5 = 
6.25 x r = 0.1, T, = 1.25. A wide range of parameter values will be investigated 
since there is variability in the dimensions of airways and wall properties can, for 
example, change with disease. Hence we will consider cases where the film is either 
thin ( E  < 0.1) or thick ( E  = 0.2), the wall is stiff (r 4 1 )  or compliant (r= O(1))  and 
weakly (4 = O( lop5)) or st,rongly damped (4 = O( 1 ) ) .  

cm, a-  b = 2.25 x 
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In this section a linear stability analysis of the evolution equations (3.9) and (3.12) 
is performed using the method of normal modes. The time evolution of small 
disturbances of the air-liquid and wall-liquid interfaces are represented by 

h = hl eat+ikz and q = ql eat+ikz, (4.1) 
where the constant amplitudes of the disturbances, h, and ql ,  are very small, that is 
lhll 4 1, lqll 4 1 ,  k is the wavenumber and a is the growth rate. These are substituted 
into (3.9) and (3.12) to yield the following dispersion relation for a :  

&a2 + [l +xT, k2 +X(k'- 1) (gk2# + l)] u +;[1 +xT, k'] k2(k2 - 1) = 0, (4.2) 
where x = r/( 1 - rTo) .  Since we are interested in small initial hoop stresses, x > 0 for 
r > 0 and small To. When To = 0, x = r. Hence the effect of including To > 0 is 
the same as replacing x by a larger value. of r, and therefore is destabilizing since 
a positive hoop stress tends to collapse the tube. If there is no wall damping, i.e. 
d = 0, then 

k2( 1 - k2) (1 +xTf k2) 
3( 1 +xT, k2-X(1 - k2)) * 

a =  (4.3) 

Note that the rigid-tube case is obtained by setting x = 0. Figure 2(a) shows the 
variation of a with respect to k2 for various values of r < 1 with To = T, = 0. For 
r < 1, the system is always unstable if 0 < k2 < 1, with h, and ql being in phase and 
hl /q l  > 1.  The maximum growth rate, a,,,, increases with increasing r, that is with 
increasing surface tension or decreasing E .  Also, the value of k at a = amax decreases 
with increasing r. Surface tension stabilizes short-wavelength disturbances and con- 
sequently a < 0 for k2 > 1.  In this case h, and 7, are of opposite sign, with Ih,/g,l > 1 
if 1 < k2 < 1 + l/r and lhl/qll < 1 if k2 > 1 + l/r. Figure 2 (a )  also shows that the 
maximum growth rate occurs at  k = 0 for r = 1. The behaviour for r > 1 is quite 
different since the denominator in (4.3) vanishes when k = k, = (1 - l/oi, implying 
that there is an infinite growth rate at a finite wavelength (figure 2b). The effect of 
the longitudinal tension parameter, T,, is to dampen disturbances and delay the 
onset of the infinite growth rate to larger wavelengths (figure 3). The critical 
wavenumber is given by kt = (r- l)/T(T,+ 1 ) .  

This singular behaviour disappears if the damping parameter, 4, is retained. Then 
the appropriate solution of (4.2) is given by the positive root 

2xqh = [( 1 +xT, k2 +x(k2- 1 )  ($k2$ + 1))'  -$k2(k2 - 1) ( 1  + xT, k2)  ~ $ 1 ;  
-X(k2-1)($k2$+1)-XT,k2-1,  (4.4) 
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FIQURE 4. a versus k2 for: (a) # = 1, T/ = 0 and r= 0.5, 1, 1.5, 2 ;  ( b )  r= 1.5, 
Tf = 0 and 6 = 0.75, 1.5, 2, 4. 
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FIGURE 5. a versus k2 for r= 1.2, # = 1 and T( = 0, 0.4, 0.8, 1.25. 

since the other root is never positive for the range of parameter values that are of 
interest. For all parameter values, we still have an unstable system if 0 < k < 1 and 
a stable one if k 2 1 .  The effect of I' on a for q5 = 1 and T, = 0 is shown in figure 4 (a). 
As expected, the maximum growth rate increases with increasing I', but in this case 
there is no infinite growth rate at finite wavenumber. For r> 1, a is non-zero at  
k = 0 and a,,, = (r- l)/rq5 a t  k = 0 if r 2 3/(3 - q5). If there is sufficient damping, 
q5 2 3, then the maximum growth rate never occurs a t  k = 0. This is displayed in figure 
4 ( b ) ,  where q5 is allowed to vary with f'= 1.5 and T, = 0. Increasing wall damping 
leads to smaller a,,, and larger k,,,. The effect of longitudinal tension parameter, 
T,, is shown in figure 5 for r= 1.2 and q5 = 1. As T, increases, the growth rate 
decreases in the interval 0 < k < 1. If T, 2 rq5/3(r- 1 ) -  1, then the maximum 
growth rate occurs at k = 0 and is independent of T,, a,,, = (r- l)/(r$) a t  k = 0. 
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We can conclude that there is capillary instability with some wall motion if the 
wavenumber of the disturbance is smaller than one. This is the same result as found 
by Rayleigh (1902) for the rigid-tube case. For very compliant airways with r 2  
3/(3-q5) and # < 3, the fastest growth rate occurs at  k = 0 implying that these 
airways uniformly shut down. This is referred to as compliant collapse by Kamm & 
Schroter (1989). Wall damping and longitudinal wall tension have stabilizing effects 
on film disturbances and if q5 2 3 there is no compliant collapse. 

5. Nonlinear stability 
Equations (3.9) and (3.12) are solved numerically using the method of lines (Holt 

1984). A system of ordinary differential equations is obtained by replacing the z- 
derivatives with fourth-order finite differences and solved using Gear’s method. As in 
Hammond (1983) and Gauglitz & Radke (1988), periodic boundary conditions were 
prescribed, so that odd derivatives with respect to z vanish : 

p + l h  p + i y  

az2j+l 
-=- az2j+l = 0 for j = 0, 1, 2, ... at z = O,y, 

where L is the wavelength of the initial disturbances, and 

h(z, 0) = A cos ( ~ x z / L ) ,  y(z, 0) = B cos ( ~ R Z I L ) .  (5.2a, b)  

In Hammond’s thin-film analysis, using a rigorously derived asymptotic approxi- 
mation (i.e. (3.9) with E = 0) ,  disturbances grew with time, but reached quasi- 
steady states consisting of a series of lobes whose number depended on L. Gauglitz 
& Radke (1988) solved (3.9) for the rigid wall case (7 = 0 for all time) with the above 
initial condition ( 5 . 2 ~ ) .  They showed that the growth of the initial disturbances 
depended critically on the initial thickness and wavelength. For a given L there is a 
value of E for which the minimum core radius, rmin = 1 + ~ ( h -  l),  tends to zero in 
finite time, i.e. a liquid bridge forms. The lubrication theory approximation becomes 
invalid when this occurs, but Johnson etal. (1991) have shown that their one- 
dimensional model is a good approximation until just before meniscus formation, 
and therefore is accurate in predicting when closure occurs. Computations were 
stopped before rmin = 0 and before the magnitude of the inertia terms neglected in 
(3.4), estimated using the numerically computed solutions, became O( 1). In  all cases, 
the leading-order axial viscous term and pressure gradient were several orders of 
magnitude larger than the neglected inertial terms, and only in the very late stages 
just prior to closure, when the film becomes thick and fluid is accelerated into the 
growing lobe, did inertia become important. 

Figure 6 shows the time evolution of both wall-liquid and air-liquid interfaces for 
r = 0.1, # = 1, E = 0.1, T, = 0, L/u = 2.866~.  The value of L/u chosen here is the 
most dangerous wavelength based on linear stability theory. This ratio is kept fixed, 
except in the case where the variation in length is investigated. Initially both 
interfaces are out of phase, but after a short while they become in phase as predicted 
by linear theory. As the perturbations grow, the film becomes flat and thin at 2z/L w 
1 where the two interfaces approach each other, and there is little fluid motion 
here except where the air-liquid interface curves away from the wall. With time, the 
length of the flattened region increases since fluid flows into the growing lobe located 
at z = 0. The pressure inside the growing lobe is approximately constant and 
consequently the location of the wall near z = 0 is independent of z. The film becomes 
very thin, of the order of 1 pm, where the two interfaces curve away from each other 
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FIGURE 6. Air-liquid, 1 +c(h(z ,  t )  - l ) ,  and wall-liquid, 1 +q(z, t ) ,  interfaces plotted as functions 
o f z a t t = 0 . 1 ,  10,30,80, 1 6 3 , 3 2 6 . r = O . l , q 5 = 1 , ~ = 0 . 1 ,  T t = O , L / u = 2 . 8 6 6 z .  

at 2zlL x 0.5. The air-liquid interface is displaced radially inward by the wall 
motion and this reduces its radius of curvature, implying that wall flexibility 
promotes greater instability. For the parameter values chosen in figure 6 meniscus 
formation occurs at t x 330. In  figure 7, I' is increased compared to figure 6. If we 
consider the increase on the basis of smaller E and fixed u then the timescales are the 
same in both figures. The effect of larger is to promote faster meniscus formation 
since the minimum core radius reaches the position r x 0.42 at t = 3.75 when I' = 0.5 
(figure 7 )  and at t = 326 when r = 0.1 (figure 6). From the development of the 
disturbance, clearly the more flexible case allows for greater deflection radially, thus 
reducing the minimum core radius by wall motion. Another effect, however, is that 
the narrowest portion of the liquid layer in figure 7,  just prior to closure, is much 
thicker than that of figure 6 just prior to closure. Hence, the draining of liquid into 
the meniscus experiences significantly more shear resistance when r is smaller and 
contributes to the larger time taken for the bulge at  z = 0 to reach a critical volume 
and become unstable. 

As in Gauglitz & Radke (1988), there is a critical value of 8 = E ,  such that rmin + 
0 as t+t,.  This value is unique for a fixed-wavelength disturbance which we choose 
as twice the airway length. For a liquid-lined flexible tube, 8, is a function of both 
fluid and wall properties. For example, the dependence of 8, on r is shown in figure 
8 for fixed wavelength and two values of 4 corresponding to a strongly damped 
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FIGURE 7. Air-liquid, 1 +e(h(z,t)- l) ,  and wall-liquid, 1 + s q ( z , t ) ,  interfaces plotted as functions 
ofzatt=0.1,0.75,1.5,2.25,3,3.75.~=0.5,q5=1,~=0.1,T,=O,L/a=2.866x. 

FIGURE 8. r 

0 0.1 0.2 

versus eC for 0,  q5 = 1, T, = 0, L/a  = 2.866~; 0 ,  q5 = 6.25 x T, = 0, 
L / a  = 2.866~; 0,  q5 = 5 x T, = 1.25, L / a  = 6. 

system (9 = 1) and weakly damped system (4 = 6.25 x The dimensional 
closure time is chosen to be no more than 10 s. As expected, the critical initial film 
thickness, ec, decreases with increasing wall flexibility, i.e. increasing T. This is 
physically reasonable since the destabilizing force in this problem is the transverse 
radius of curvature of the air-liquid interface. When the wall deflects inward it is 
affecting this radius of curvature in a manner similar to a thicker liquid lining. The 
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FIGURE 9. l+s (h (O, t ) - l )  versus t for: (a) E = 0.096, 0.098, 0.102, 0.106, 0.12; 
( b )  r= 0.05, 0.08,o.i ,  0.12,0.2. 

thicker film has the added effect of allowing the meniscus to grow faster since 
opposing shear stresses in the thin neck region are smaller. Decreasing 6 has a 
stronger effect at larger values of r resulting in smaller values of 8,. 

In figure 9(a), the minimum core radius, rmin, is plotted versus time for various 
values of E .  For sufficiently small E ,  disturbances tend to quasi-steady solutions 
consisting of constant-pressure lobes and thin straight segments, similar to the 
results of Hammond (1983) for the rigid-tube problem. For E 2 0.098 and t < 600, 
disturbances initially grow exponentially as predicted by linear stability theory, but 
instead of saturating they grow rapidly (rmin+ k l ( t , - t ) t  as t - t t ,  with 0 < ,$ < 1) 
when the film is sufficiently thick, and a meniscus forms after finite time. If E is 20 YO 
or more larger than 6, then the long period of time during which rmin decreases very 
slowly disappears since the lobe at x = 0 reaches a critical volume before the film 
becomes very thin and the shear resistance becomes very large. This phenomenon is 
consistent with results obtained by Johnson et al. (1991) and Otis et al. (1990) for 
larger 8.  In figure 9 ( b ) ,  r i s  varied as the minimum core radius is plotted versus time. 
If is sufficiently small (r = 0.05), meniscus formation does not occur since there is 
not sufficient wall motion or the capillary forces are too small. As explained before, 
a decrease in E leads to greater wall motion inducing faster meniscus formation and 
therefore closure time decreases with increasing r for fixed g. r can also be increased 
by increasing 6, but g affects the timescale by a factor of v-l (3.3). A liquid bridge 
forms a t  t x 330 for r = 0.1 and at  t % 900 for r = 0.08. Hence faster meniscus 
formation can also occur by increasing v since in this situation a 25 % increase in u 
leads to a reduction of closure time by approximately two thirds. 

in 
figure lO(a). For = 1, closure time decreases by a couple of orders of magnitude as 
a result of increased wall flexibility, from r= 0.1 to r= 2. The value of tt/(,ua/u) 
decreases very rapidly for r < 0.25 and is independent of r for r 2 1. If r 2 1,  t,* is 
independent of r for fixed r. This is because when the tube is sufficiently floppy the 
radially inward motion of both air-liquid and liquid-wall interfaces is extremely 
rapid. However, if T'is doubled from one to two due to a doubling in u, tF is halved. 
This is it result of capillary instability only. For small r, 0 < r < 0.25, t: grows 
asymptotically as r+ 0. Meniscus formation takes an infinitely long time for the 
rigid-tube limit since the value of E chosen here is smaller than the critical value for 
the rigid tube. Also, the closure time is independent of wall damping for r< 0.2 
because the tube is relatively stiff and consequently there is not much wall motion. 
In this range of r closure is due to capillary instability only. However, for a weakly 

The closure time, t,*, is plotted as a function of r for q5 = 1 and 6 = 5 x 
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FIGURE 10. (a)  Closure time versus r for 0, $ = 1 ; 0 ,  q5 = 5 x lo-*, with E = 0.1, T, = 0, L/a  = 
2 . 8 6 6 ~ .  ( b )  Closure time versus E with r = 0.1, L / a  = 2 . 8 6 6 ~  and 0, TL = 0, q5 = 1 ; , T, = 1.25, 
q~ = 1 ;  V, T, = 0, q5 = 6 . 2 5 ~  lo-'. 
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FIGURE 11. Air-liquid, 1 + E ( ~ ( z ,  t ) -  l) ,  and wall-liquid, 1 +ET/ (z ,  t ) ,  interfaces plotted as 
functions of z at t = 0.1, 1,  2, 3, 4, 4.95. r = 0.1, $ = 1, E = 0.1, TL = 0, L / a  = 67t. 

damped system (4 = 5 x closure occurs much more rapidly for T > 0.2 since for 
floppier tubes there is hardly any force preventing the walls from collapsing. This 
transition is very rapid: t: drops by three orders of magnitude as T increases from 
0.5 to 0.8. In  figure 10(b) t,* is plotted versus 6. As can be seen, t ,*/(pa/a) decreases 
monotonically by four orders of magnitude as E increases from 0.097 to 0.2 ; for 8 = 
0.1, t: w 10.4 s and for E = 0.2, t,* w 0.0012 s. Longitudinal tension and wall damping 
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FIGURE 12. Closure time t,t versus L / a  with r= 0.1, T( = 0, E = 0.1 and 9 = 1. 

do not have much effect on closure time. An increase in Td leads to longer t: only as 
E + O  and a decrease in q5 leads to shorter t: as the film becomes relatively thick 
initially. 

The effect of varying wavelength is also investigated. In  figure 1 1, L/a  is increased 
to 6 ~ ,  and the film thickness does not become as small as in figure 6 before meniscus 
formation. In addition, as observed by Hammond (1983), a secondary lobe is formed 
because the film breaks up into constant-pressure lobes on either side of the thinning 
region. In  figure 12, t: is plotted as a function of L / a  and shows that for fixed E there 
is a critical wavelength which minimizes t:. For r = 0.1, q5 = 1, E = 0.1, Td = 0, the 
critical value is about twice that predicted by linear stability and the minimum t: is 
about one order of magnitude smaller than the case when the most dangerous 
wavelength is given by linear theory. 

5.1. Applications to the lung 
The above model can be applied to airway closure since the airways of the lungs are 
liquid-lined flexible tubes which are tethered to the lung parenchyma. As in Elad, 
Kamm & Shapiro (1988b), the tethering effect of the parenchyma can be lumped 
together with the properties of the airway walls. They derive an empirical 
pressurearea tube law appropriate for airways which is given by 

where p is the dimensionless cross-sectional area, n is a coefficient dependent on wall 
properties and K is an effective wall stiffness parameter which depends nonlinearly 
on volume change. This term has a similar effect to the term multiplying 1"l in 
(3.12). Hence 1"' can be thought of an effective stiffness parameter combining the 
effects of wall stiffness and parenchymal stiffness, and the inclusion of wall tethering 
can be incorporated by considering a thicker-walled tube which has the effect of 
reducing r. 

Johnson et al. (1991) and Otis et al. (1990) used their numerical analysis of rigid- 
tube models which included fluid inertia to calculate the time taken for a sinusoidal 
perturbation of the air-liquid interface to occlude the lumen of an airway. The 
airway length-to-radius ratio was chosen to be 6, which is appropriate for generation- 
15 airways (Weibel 1963), with the wavelength of the initial disturbance equal to the 
airway length and E = 0.2. Johnson et al. (1991) obtained t: z 0.065 s using both 
their small-s and arbitrary-film-thickness models. Using A = 0.001 and B = 0 for the 
amplitudes of the initial disturbances in (5.2), we obtained a value of tz z 0.06 s, 
which agrees well with theirs, when we set r = 0. For the flexible-airway case using 
typical wall parameters, Tl = 1.25, q5 = 5 x and r = 0.1, t: z 0.045 s, i.e. a 25 Yo 

AP = K ( B " - l )  = K ( q ) ( ( l + € q ) 2 n - l ) ,  (5.3) 
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FIQURE 13. Closure time versus r for 0 ,  # = 5 x W4; 0 ,  # = 0.01 ; v, # = 0.1 ; 
v, # = 1 with E = 0.2, T, = 1.25 and L / a  = 6. 
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Ail-liquid, 1 + e(h(z,  t )  - l) ,  and wall-liquid, 1 + q ( z ,  t ) ,  interfaces plotted as functions 

of z at t=0.01, 1, 5.7736, 5.78418, 5.7868, 5.787115 with r= 0.514, $=5xlO-',  T,= 1.25, 
6 = 0.2 and L / a  = 6. 

reduction compared to the rigid-tube case. Figure 8 also shows how rvar ies  with E ,  

for T, = 1.25,$ = 5 x andL/a = 6. For this set ofparameters, e , ( r  = 0) % 0.172, 
E , ( r  = 0.1) x 0.152 and E,(T = 0.5) x 0.109, which clearly demonstrates that the 
volume of fluid in the liquid lining required for closure strongly depends on wall and 
fluid properties even for relatively stiff airways. In figure 13, t,*/(pa/a) is plotted 
versus r for various values of 4. As explained before, for small I' the closure time is 
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independent of q5 because there is no significant wall motion. At r x 0.5, a decrease in 
wall damping leads to more rapid closure, implying that there is a transition from 
surface-tension-driven instability to compliant collapse. A case corresponding to 
rapid airway closure, r = 0.514, q5 = 5 x E = 0.2, Tt = 1.25, L / a  = 6, is shown in 
figure 14. Initially there is hardly any fluid motion and therefore the air-liquid and 
liquid-wall interfaces are pulled inward and almost parallel to  each other. When the 
radius of curvature is approximately 0.5, collapse is very rapid and occurs a t  t % 

5.787 (i.e. t r  z 0.0091 s, which is approximately 85% faster than the corresponding 
rigid-tube case). 

6.  Conclusions 
We have modelled the linear and nonlinear dynamics of a thin film consisting of 

a Newtonian fluid coating a thin flexible circular tube. This model attempts to  
characterize the relevant physical parameters which promote the closure of the small 
airways of the lungs either by the meniscus formation or wall collapse, and represents 
a first step towards more realistic models which will incorporate non-axisymmetric 
disturbances to  mimic non-circular airway collapse. 

Nonlinear evolution equations for the air-liquid and wall-liquid interfaces are 
derived from first principles. Lubrication theory is used since the film thickness is 
small compared to the length of an airway and fluid inertia is negligible except in the 
very final stages of collapse (Johnson et al. 1991). As in the models proposed by 
Gauglitz & Radke (1988) and Johnson et al. (1991), a more accurate expression for 
the interfacial curvature is employed than that used by Hammond (1983), which 
contains terms that become large as the film thickens. In the long-wavelength limit, 
a simple wall model can be used where only radial displacements are considered. 

The results presented in this paper demonstrate that  there are two important 
mechanisms which promote airway closure : meniscus formation and compliant 
collapse. These instabilities strongly depend on e,  the initial non-dimensionalized film 
thickness, r, the ratio of surface-tension to  elastic forces, and L,  the wavelength of 
the disturbance. Linear stability theory shows that if r is sufficiently small then 
there is a capillary instability for L / a  > IT. Otherwise, if r 2 3/(3 - 4) and q5 < 3, the 
most unstable mode is compliant collapse. For airways this occurs when r 2 1 since 
4 4 1.  A nonlinear theory is employed to estimate the time it takes for a meniscus 
to  form and show the dependency of the critical initial film thickness, E, ,  on the 
flexibility parameter r. Figure 9(a) indicates that  an increase in E leads to faster 
closure times, t:, which is consistent with results for rigid tubes (Gauglitz & Radke 
1988) and that there can be up to three timescales depending on the size of E .  

Initially, for very small e,  the minimum core radius decays exponentially as 
predicted by linear stability theory, and is followed by a period in which decay is 
very slow since flow resistance increases dramatically as the film becomes extremely 
thin. Eventually sufficient fluid is accumulated in the growing lobe to induce rapid 
meniscus formation. This phenomenon is not observed for large E (Johnson et al. 
1991 ; Otis et al. 1990). Figure 10 ( b )  also shows that constant longitudinal tension and 
wall damping do not have a significant effect on closure times for small r. An increase 
in r due to smaller Young’s modulus also induces smaller closure times, and smaller 
6, values are required for closure. Figure 8 demonstrates that E ,  strongly depends on 
wall and fluid properties, for example s,(T = O.l) /e , (r  = 0) x 0.75-0.88 and E,(T = 
0 . 5 ) / ~ , ( r  = 0) w 0.5-0.65. Hence closure can be greatly enhanced in diseases where r 
has a value above normal. Figures 10(a) and 13 indicate that closure time is 
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independent of wall flexibility if there is sufficient wall damping. For weakly damped 
systems, there is a rapid transition between closure due to capillary effects and due 
to wall collapse at  approximately r= 0.5, which is half the value obtained using 
linear stability theory. The discrepancy may be because the linear theory does not 
take into the account the thickness of the unperturbed film. An example of coupled 
capillary-compliant instability is shown in figure 14 for r = 0.514 and E = 0.2. 

Another interesting result is that the most dangerous wavelength (or fastest 
growing mode) computed using the nonlinear model is longer than that predicted by 
linear stability theory (figure 12). 

Understanding the effects of initial film thickness, surface tension of the air-liquid 
interface and modulus of elasticity of the wall on meniscus formation and compliant 
collapse could be of great importance in recognizing certain respiratory diseases. 
These two possible mechanisms for airway closure may be relevant in : (i) respiratory 
distress syndrome of premature neonates which is due to an abnormally high surface 
tension of the lung’s liquid lining and an inability of the lungs to produce surfactant ; 
(ii) in emphysema, where the elastance of the airways can become small enough and 
the thickness of the liquid lining may be abnormally high; (ii) in asthma, which is 
sometimes accompanied by airway mucosal and luminal edema and therefore an 
increase in lung fluid. 
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